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1. Introduction.

Symmetry is of central importance in current mathematics, physics, chemistry, and many other
areas of inquiry. Indeed in well-known journals like Letters in Mathematical Physics and Journal
of Mathematical Physics one finds that, respectively, over 50% and some 30% of the articles

deal with one or another aspect of symmetry (and groups and representations of groups) (in
1992).

Most people are familiar with the intuitive idea of symmetry in art of two or three
dimensional objects. For example in the
figure on the right (when the top border
is removed and the basic pattern 1s
periodically extended over the whole
plane), there is both translational
horizontal and vertical symmetry, there is
rotation of 90 degrees around the centers
of the eightfold rosettes and the
intersticial four fold ‘decorated crosses’
and there are horizontal and vertical
reflections through the centres of those
rosettes and through the centers of the
fourfold crosses. This intuitive idea needs
a bit of refinement (see section 2,
Classical symmetry, below) but is
basically correct and useful. However, in
the last 15 years or so, it has become
clear that our ideas of symmetry need to
be generalized. One cause are the
socalled quasicrystals, which, when ]
examined by X-ray crystallography, Figure 1
exhibit five-fold symmetry patterns,
which is impossible classically because there are no periodic tilings of three space with five-fold
symmetry; another is the case of quantum integrable systems: these derive from classical
Liouville integrable systems by quantization, and, provably, the classical symmetry of the
classical systems gets destroyed in this process; it turns out that both the symmetry group and the
dynamical system need to be deformed together to preserve the symmetry, but the resulting

“symmetry” can not anymore be described by a group; instead one needs a certain type of Hopf
algebra called a quantum group.

The objects which codify classical symmetry in the sense alluded to above, are groups and
Lie algebras (the infinitesimal versions of ‘continuous’ groups). The applications of groups and
Lie algebras are not limited to the cases where there is, so to see, visibly, some symmetry
present. There are other, deeper, instances of applications, such as orthogonal polynomials (well
understood) and knot invariants (not at all understood) where groups of Lie algebras (or their
generalizations) play a decisive role.




2. Classical symmetry.

Let G be a group with unit element ¢ € G acting on a set X, i e. there is given a map
a:GxX — X such that a(g,ath,x))=o(gh.x) and (e, x)=x for all g.he G, x e X. Usually
one writes simply gx for a(g.x). The isotropy subgroup ot xeXis

G ={geCG:gx=x}
and this is the symmerry of the object x. This fits nicely which our intuitie ideas of the symmetry
of an object in three space or in two space: take for G the appropriate group of Euclidean
motions and for X the set of all closed subsets of three space or in two space, as the case may be.

A few more examples follow.

2.1. Crystallographic symmetry. Let c be a discrete subset in R” together with a labelling
from ¢ to some finite set. Think of the elements of ¢ as atoms of various kinds as indicated by
their labels. The set c is a classical crystal if it is periodic, i.e. if there is a finite bounded subset
of ¢, which, periodically extended, gives all of c. Let C,, be the set of all classical crystals. The
Euclidean group E; acts on C,, and the isotropy subgroups are the crystal symmetry groups.

2.2. Automorphisms of algebras. Take a fixed vector space V. An algebra structure on Vis
given by a multiplication map (a composition structure) VXV — V, (a,b) —> ab that is
associative: (ab)c = a(bc) and a unit element 1€ V: la=a=al. The group G = GL(V)of vector
space autommorphism acts on the set of all algebra structures on V and the isotropy subgroups of
a given element A in that set, i.e. an algebra A, is the automorphism group of that algebra

2.3. Symmetries of differential equations and dynamical systems. Consider a differential
equation (or dynamical system) u = f(u) on R" (or, more generally, on a differential manifold).
A solution is a differentiable map u: R — R" that satisfies the given differential equation. A
symmetry of the differential equation is a diffeomorphism ¢ of R" that takes solutions into
solutions: Sometimes one also permits a rescaling of time (dynamical symmetries). These ideas
are readily extended to more general differential equations (than flows) and to partial differential
equations. It has turned out that is is a good idea to consider more general symmetries in the
sense that one not only considers transformations u +— ¢@(u) in which the transformed function
¢(u) depends only on (the components of) u itself, but generalized transformations in which the
result can also be dependent on the derivatives of u up to a certain order (generalized
symmetries). Much can be done with these generalized symmetries and many explicit solutions
to important equations arise this way, see [11, 26].

One reason (amoung many others) that symmetries are so important is their link with
conservation laws. Consider a Hamitonian dynamical system on R** (or more generally on a
symplectic manifold), given by a Hamiltonian function h: R* — R. The evolution in time of a

function f on R*" is given by f = {k, f}where { , } is the Poisson bracket which in the standard

L o dg Jdg of . : 5 .
case of R* is given b = ) ——=2-——=— where the coordinates in R*" are written
gvenby (f.01=3, 22121

(4,»"*.4,, P> "> P,)- Suppose that {f,h} =0, i.e. thatfis a conserved quantity. Then, integrating
the flow defined by the function f gives a one parameter group ¢(s) of symmetries of the original

dynamical system. And inversely, a one parameter group of symmetries gives rise to a conserved
quantity (Noether’s theorem).

2.4. Galois groups. Let Q be the algebraic closure of the field of rational numbers Q,

G = Gal(Q/Q) the group of automorphisms of Q and let X be the set of all finite field
extensions of the rational numbers. The group G acts on X in the obvious way. If the isotropy
subgroup of a finite field extension F € X is normal in G, F/Q is a Galois extension and its
Galois group is G/ G;. So in this case the symmetry group arises as a quotient. Fields are special



algebras so we could also have used the setting of 2.2 above. That gives the same group of
symmetries.

3. Symmetry breaking.

Consider a square in the plane. As soon as it is slightly deformed, to a rectangle, say, it loses its
fourfold rotation symmetry and only the horizontal and vertical reflection symmetries remain.
This example and many others concerning symmetries of objects in space give one the feeling
that under sufficiently small changes symmetry always becomes less. And indeed there is a
theorem to that effect, [21]: Let G be compact Lie group acting smoothly on a compact smooth
manifold X, then for every x € X there is a neighbourhood U such that for every y in U the
symmetry G, of y is smaller than the symmetry G, of x. Here a subgroup H of G is smaller than

a subgroup K of G if there is an element g in G such that H c x™'Kx. Very little is known more
generally. It is universally believed that such a theorem also holds for the crystallographic case
(see 2.1 above), but I know of no proof in the literature. Such a symmetry breaking theorem
certainly does not hold in full generality. Some examples can be found in [12].

4. Symmetry and extremality.

There seems to be a deep relation between symmetry and extremality in the sense that extremal
objects tend to have high symmetry. This statement, in its present bald form, needs qualification,
see [15], where there is also a selection of examples. One theorem (the Purkiss principle) in this
direction can be found in [27]: a critical point of a symmetric function for which the induced
tangent representation is irreducible is a maximum or a minimum.

5. Nonclassical symmetry.

For classical Liouville integrable systems the socalled dressing method provides a large group of
symmetries, [29]. However, these dressing transformations do not preserve the symplectic
structure on the underlying manifold of the classical Hamiltonion Liouville integrable system,
[22]. That means that these symmetries do not survive quantization. It seems that both the
dynamical system and the symmetry group must be deformed together to preserve symmetry.
The result is a generalized notion of symmetry that is given by a special kind of Hopf algebra
called a quantum group. These notion will be described below. Much still needs to be done to
understand precisely what happens during the quantization of a classical Liouville integrable
systems to a completely integrable quantum system.

There are crystals in nature whose X-ray crystallographic analysis gives five-fold symmetry
elements. This is impossible classically. There are also the (related) Penrose tilings of the plane
(Penrose uiverses) that have five fold symmetries but are aperiodic. These structures can be
understood as projections of higher dimensional classically symmetric objects, [1, 6, 7]. Very
possibly the symmetries of these structures can also be understood (but not necessarily better) in
terms of a Hopf algebra symmetry.

6. Group algebra.
Give a finite group G consider the vector space C[G]= {Zagg: a, € C} of all (formal) C-linear

geG
combinations of the group elements. A multiplication is defined by extending the group
multiplication C-linearly. This yields an associative algebra C[G] with unit e, the group algebra
of G. Now, to prepare for the idea of a Hopf algebra as carrier of an idea of symmetry observe
the following. Given an object M and a symmetry group G of it we have an action of Gon M
(NB, compared to section 2 above “M =x and G =G,.). Then, on the functions on M we also
have an action of G and hence, extending things C-linearly, an action of the group algebra C[G]
on thevector space consisting of the functions on M. This paves the way for the idea of any
algebra as a potential symmetry algebra: an algebra A is a symmetry algebra for an object M is
there is a nontrivial action of A on the vectorspace Func(M), i.e. if Func(M) is an A-module. This



is probably to general to be of much use: there are just to many algebras. For the special class of
algebras called Hopf algebras, there are concrete and important examples where they do turn up
naturally as symmetry algebras.

Another possible generalization of groups as carriers of symmetry would be to consider semi-
groups. This has not yet had much attention.

7. Tensor product.

To define the notion of a Hopf algebra we need tensor products. If V is a vector space with basis
{e;:i eI} and W is a vector space with basis {f; : j € J}, then the tensor product V® W is the
vector space with basis {e, ® f;:iel,je J}. If the dimension of Vis m and that of Wis n the
dimension of the tensor product V ® W is mn. There is an obvious natural bijective
correspondence between bilinear maps VX W — Z into a third vector space Z and linear maps
V® W — Z. This can serve as an alternative (and far better) definition of the tensor product
which extends to more general cases. If o: V, = V,, §: W, — W, are two linear maps their

tensor product is the linear map e ® 8 given by (@ ® B)(e,® f,)=0(e,)® B(f,) =D a'ble,f,

J

if a(e,) = Zai"e'k, B(f)= ij f, - This corresponds to the Kronecker product or outer product
of matrices.

8. Hopf algebras
An algebra A over a field k (e.g. k = C, the complex numbers) is a vector space over k£ with a

(bilinear) multiplication (or composition structure) m: AX A — A, i.e. a linear map

m:A® A — A, and a unit element e which is the same as a linear map e: k — A. Associativity
is expressed by the relation m(m ® id) = m(id ® m) : A®* — A, and there are also such formulas
to express the identity properties.

Dually a coalgebra over k is a vector space C with a decomposition structure y:C — C® C and
a counit €: C — k such that (id ® )i = (U ® id) i (coassociativity) and

(e®id)u=id, (id® €)1t = id where the natural identifications k® C= C= C®k are used.

A bialgebra (B,m,e, L,€) over kis a vector space B equipped with both an algebra structure
(m,e) and a coalgebra structure (L,€) that are compatible in the sense that ( and &€ are algebra
homomorphisms (or, equivalently, that m and e are coalgebra homomorphisms).

A Hopf algebra H is bialgebra with one more structure element: a linear map 1: H — H, called
antipode, such that m(id ® 1)t = id, m(1® id)u=id.

The group algebra C[G] of a finite group when equiped with the coalgebra structure,
L:g—>g®g, e(g)=0 for g#e, £e)=1, and the antipode 1: g+> g~ is an example of a
Hopf algebra. In this sense Hopf algebras generalize groups.

Two other examples are the algebra of functions on an algebraic groups and the universal
enveloping algebra of a Lie algebra. For instance the algebra of algebraic functions on
GL(n,C)can be described as the quotient algebra C[X;,--- X, X1/ X det(X;) =1.The

comultiplication is given by X; - Z X, ® X;, the counit by £(X}) =}, the Kronecker delta,
1
and the antipode is given by the formula for the matrix inverse. For the universal enveloping

algebra Ug of a Lie algebra g, the comultiplicationis x > 1® x+x® 1 for x e g, and the
counit and antipode are given by &(x) =0, (x)=-x, x € g.

9. Quantum groups

The notion of a quantum group is not yet completely fixed in the literature; in any case there are
two different (but dual) kinds. Roughly a quantum group is a Hopf algebra over the ring of



Laurent series k((g)) (or a similar ring such as k[g,q"']) that for g=1 becomes the Hopf algebra
of algebraic functions on an algebraic group or the universal enveloping Hopf algebra of a Lie
algebra. A comprehensive introduction is [S]. The best known example of the first kind is the
quantum group SL,(2)which, as an algebra, is the quotient of H, =k < t,68.6,8 > by the
relations fyt; = gtits, 71 = quit}, 3t} = qith, 2} = g2}, £ =}, £t} — 11 = (q—-q )it
and (the quantum determinant is 1 relation) #/f; — g7z} = 1. The comultiplication is given by the
matrix multiplication formula (see section 11 below). These relations, except the quantum
determinant is 1 relation, come from the R-matrix

qg O 0 0

0 1 g—¢q" 0
00 1 O
00 0 gq

(or several other possibilities) by the recipe from section 11 below. There are similar quantum
groups associated to all the classical simple Lie groups.

10. R-matrices and the Yang-Baxter equation
Let Vbe an n-dimensional vector space, and R an endomorphism of V ® V; i.e after choosing a
basis, R becomes an n® x n* matrix. For each i = 1,---,n let
R=1d,®--®ld)®R®Id,®---®1d,
T fhotos it facors
With these notations (one form of) the Yang-Baxter Equation (YBE) is R, R, R, = R,R|R,. These

constitute n® equations in n* variables, so one does not expect, a priori, very many solutions. It
is a remarkable fact that there are in fact a good many solutions. The YBE equation originally
arose in the work of R J Baxter on solvable models in statistical lattice mechanics, [3] and the

work of C N Yang in particle physics theory, [28]. It is no accident that the same equation arose
in these two fields.

There are R-matrices for each of the quantum groups associated to the classical simple Lie
groups that satisfy the YBE. (More precisely the matrices 7R where 7 is the switch
endomorphism v®w > w® v of V®V satisfies the YBE in the form given.)

11. Quantum groups and QIST
Given any n* x n’matrix R=(r%’) one can associate a bialgebra to it as follows. Consider the

free associative algebra over kin n* indeterminates H, =k <t,,--,t >. Now consider the
expression
(1L.1) RTT, -LTR
where T is the n X n matrix of indeterminates

tll e t"l;
T=|: L, =T®Id, T,=1d®T
i In
(so that 7; and T, are n® x n* matrices). Let I(R) be the ideal in H, generated by the
n*elements (11.1). Then the quotient algebra H,(R) = H,, / I(R)always has a natural bialgebra
structure under the standard matrix comultiplication £, > Yt ® 4.

The expression (11.1) is at the heart of the QIST (Quantum Inverse Scattering Transform)
method as developed by the Skt Peterburg (Leningrad) school of Ludwig Faddeev, [9, 10].
Finding solutions of the FCR (Fundamental Commutation Relations) RT,T, = ,T,R, where T is a



matrix of operators, is the same as studying the representations of (the dual of) the bialgebra
H,(R), [13]. Once such a solution has been found, the socalled algebraic Bethe Ansatz provides

a systematic approach to find the eigenvalues and eigenvectors of the trace of 7. The algebraic
Bethe Ansatz itself has interrelations with the representation theory of the symmetric groups
(Young diagrams and such), [16, 17], a matter that asks for further investigation.

12. Quantum groups and g-special functions

It is one of the remarkable discoveries of the mid 20-th century (by Eugene Wigner, N Ya
Vilenkin, Willard Miller Jr)that the special functions of mathematical physics, such as Jacobi
polynomials and other orthogonal polynomials, and Bessel functions, basically arise as matrix
coefficients of representations of Lie groups, see [25] for a comprehensive survey. In the mid
19-th century, long befor quantum theory, it was discovered that it is possible to insert a
parameter g in the various known families of special functions in such a way that many of their
properties (such as orthogonality) were preserved and such that for g=1 the original functions
reappeared. It is a quite recent discovery, simultaneously by several (groups of) people, amoung
which Koornwinder, see [18, 19, 20], and [25], that these g-special functions arise from quantum
groups in much the same way, i.e. as coefficients of representations of quantum groups. See also
[8] for narrowly related work. It is a historical accident that the letter g of g-special functions,
adopted in the 1850-ies, is also the g of ‘quantum’.

13. Knots and links and their invariants

A knot is the image of a piecwise-differentiable diffeomorphism of the cicle into three space; a
link is the disjoint union of several knots (which maybe linked, whence the name). Above are
some examples.

CICRORG

Trefoil knot Two linked circles

Figure eight knot Mirror image of

Figure eight knot

Figure 2 Figure 3

Two knots or links are considered equivalent, if one can be changed continuously to the other
without cutting and gluing (ambient isotopy). This is precisely the intuitive idea of the
equivalence of two knots. For instance the knot in figure 4 is equivalent to a simple circle in tree
space (the unknot). The figure eight knot and its mirror image (see figure 3 above) are equivlent,
but the mirror image of the trefoil knot (see figure 2 above) is not equivalent to the trefoil itself.
The example below, figure 5, due to Tietze, shows two knots: one of these is trivial, the other
not. They differ in only one spot where an overcrossing has been changed to an undercrossing.



f£xamples like these show the need for
algorithmically computable objects (knot
and link invariants), which are the same
for equivalent links and which, ideally,
distinguish between different ones.
‘Whether this ideal can be realized is still
an open question. However, in the last few
years a number of most striking new
invariants have been discovered, notably
the so-called Jones and Kaufmann
polynomials. Rather mysteriously—there
1s no Lie algebra of symmetry in
sight—they come from quantum groups
and solutions of the Yang-Baxter
equations.

14. Vassiliev invariants

C‘(/”T‘i\,)

Figure 4

For a singular link a finite number of transversal self intersections are allowed; i.e. instead of
inbeddings we now consider immersions. There is an analogous idea of equivalence, called rigid
vertex equivalence (which is a bit stronger than the intuitive idea of changing a singular link
continuously to another). Each oriented knot invariant V can be extended inductively to an

invariant V™ for singular knots with precisely m self intersections by the formulas VO =y

Vo) = V) TR

and



A knot invariant V is a Vassiliev invariant of order m if V" is identicaly zero. There are many
Vassiliev invariants. Following [4], let us call the invariants arising from quantum groups by
Turaev’s formula, see section 17 below, quantum group invariants. Now, loc. cit., replace g by

¢* and expand in powers of x, then the coefficient of x™ is a Vassiliev invariant of order m.

All known Vassiliev invariants come from Lie algebras, and, conjecturally, all do, [2], a
matter that is more than a bit mysterious.

15. Braid group

A braid on m strings (strands) is formed as follows. Take m points on a line in an upper
horizontal plane and m points vertically below them in a lower horizontal plane. Attach strands

connecting each upper point to some lower point in such a way that each horizontal plane
between the upper and lower one

(including those two themselves)
Intersects the stands in precisely m
points. Figure 6 shows an example
of a braid on five strands.

There is a natural way to compose \ / /
braids: identify the lower horizontal

plane of one braid with the upper

one of another on the same number

of strands. This gives a new braid.

Figure 7 shows the composition of

two braids on two strands. /

Two braids are equivalent if they \. \.
can be deformed into each other by
an ambient isotopy keeping the end
points fixed and without the strands
passing out of the area bounded by
the upper and lower horizontal
planes. Non-uniform (and uniform)
stretching and shrinking is also
allowed, i.e. moving the two

bounding planes up and down and/or '
moving the endpoints on the upper / /
and lower bounding planes closer

Figure 6

together or further apart. The trivial
braid on m strands consists (of the
equivalence class) of m strands
dropping straight down. For instance

the two braids in figure 8 are -
equivalent; the right braid is the \
trivial one on two strands. It readily

follows that the equivalence classes \

of braids on m strands form a group.

It is called the Artin braid group B,.

Now consider the elementary braids

onm strands 0, i=1---,m—1,

where o, has the i-th strand Figure 7
undercrossing the (i+1)-th one, and

—_—

\



nothing else, see figure 9 below. It is
now also easy to see that each braid on
m strands is equivalent to one composed
of the elementary

braidso,,-*,0,,_,,0; ", -+,0,., where the
inverse elementary braids are exactly
like the ones in figure 9 except that the
i-th strand overcrosses number i+1. A
much deeper result is Artin’s theorem:
the braid group on m strands is
generated (as a group) by the elementary
braids o;, i=1,---,m—1, and the
relations are engendered by

\

00,40, =0,,0,0,,, i=1--,m=2
0,0;,=0,0, for li—jl22

16 Links and braids Figure 8

. X |

Figure 9

Given a braid it is easy to obtain a knot from it: simply connect the upper points to the lower
ones by nonintersecting and noninterlacing piece-wise smooth curves. It does not matter how this
is done. The resulting links will be ambient isotopic. Figure 10 illustrates the process. Every link
(equivalence class) can be obtained this way (Alexander’s theorem) and it is also precisely
known when two braids give the same link (Markov’s theorem). As a matter of fact the closure
depicted in figure 10 is the trefoil knot as can be seen by inspecting figure 11.

17. Quantum group link invariants
An extended Yang-Baxter operator is a quadruple (R,V,,3) consisting of an invertible

n* x n* matrix R satisfying the YBE (see section 10 above), an n X n matrix v, and two scalars
o, 3. In addition to the YBE for R these data are required to satisfy

(V®V)R=R(v®V), Tr,(R*(v®Vv))=a* fv
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~
a3 b3 b3
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a4 b4

Figure 10

AKX

Figure 11

Here, if M =(m) is an n* x n* matrix (with the usual lexicographic ordening of the upper and
lower indices), then Tr,(M) =N = (n}) is the n X n matrix with n; = m{ +---+m, . Given an
extended Yang-Baxter operator, Turaev’s formula, [23]

Tr(&) =™ @B Tr(p(5V®™)
defines an oriented link invariant. Here £ = 07" ---0}" is an element of the braid group B, onm

strands, w(§) =g, +---+&,, and p, is the representation of the braid group defined by the
invertivle YBE solution R which sends the generator o, to R, (see section 10 above). The Jones

polynomial and the Kaufmann polynomial can be obtained from these Turaev quantum group

invariants when one takes for the R-matrices those that define the one parameter quantum groups
associated to the classical simple Lie algebras.

18. Multiparameter R-matrices
The R-matrices that define the A-type quantum groups GL,(n) satisfy the condition
(18.1) r® =0, unless {c,d}={a,b}

In [14] all invertible solutions are determined of the YBE that satisfy this additional condition
(18.1) These solutions have a block structure with each block in turn consisting of a number of
interconnected cells. The blocks are also interconnected in various non-trivial ways. The single

n
block solutions with size 1 cells give precisely the (7

]-l- | parameter A-type quantum groups
that have been independently discovered recently (1990/1991) by at least six (groups) of authors.
These extend to extended Yang-Baxter operators, but do not define new invariants (the extra
parameters drop out). Multiple block solutions extend to extended YB operators if and only if a
certain number attached to each block is the same. This does potentially give new invariants,
[14]. It remains to determine how strong these invariants are and if they give more than is
already available. The B-, C-, and D-type quantum group R-matrices satsify a similar but more
complicated condition (18.1). The solutions satisfying that condition can also be largely
determined, [24].
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